Package: LassoGEE 1.0

Yaguang Li

LassoGEE: High-Dimensional Lasso Generalized Estimating Equations

Fits generalized estimating equations with L1 regularization to longitudinal data with high dimensional covariates. Use a efficient iterative composite gradient descent algorithm.

Authors:Yaguang Li, Xin Gao, Wei Xu

LassoGEE_1.0.tar.gz
LassoGEE_1.0.zip(r-4.5)LassoGEE_1.0.zip(r-4.4)LassoGEE_1.0.zip(r-4.3)
LassoGEE_1.0.tgz(r-4.4-x86_64)LassoGEE_1.0.tgz(r-4.4-arm64)LassoGEE_1.0.tgz(r-4.3-x86_64)LassoGEE_1.0.tgz(r-4.3-arm64)
LassoGEE_1.0.tar.gz(r-4.5-noble)LassoGEE_1.0.tar.gz(r-4.4-noble)
LassoGEE_1.0.tgz(r-4.4-emscripten)LassoGEE_1.0.tgz(r-4.3-emscripten)
LassoGEE.pdf |LassoGEE.html
LassoGEE/json (API)

# Install 'LassoGEE' in R:
install.packages('LassoGEE', repos = c('https://liygcr.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/liygcr/lassogee/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

2.70 score 452 downloads 3 exports 80 dependencies

Last updated 4 years agofrom:dbe40d2d1d. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 06 2024
R-4.5-win-x86_64NOTENov 06 2024
R-4.5-linux-x86_64NOTENov 06 2024
R-4.4-win-x86_64NOTENov 06 2024
R-4.4-mac-x86_64NOTENov 06 2024
R-4.4-mac-aarch64NOTENov 06 2024
R-4.3-win-x86_64NOTENov 06 2024
R-4.3-mac-x86_64NOTENov 06 2024
R-4.3-mac-aarch64NOTENov 06 2024

Exports:cv.LassoGEEICLassoGEE

Dependencies:caretclasscliclockcodetoolscolorspacecpp11data.tablediagramdigestdplyre1071evdfansifarverforeachfuturefuture.applygenericsggplot2globalsgluegowergtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellmvtnormnlmennetnumDerivparallellyPGEEpillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6RColorBrewerRcppRcppArmadillorecipesreshape2rlangrpartscalesshapeSimCorMultResSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr